
Wigner-Dyson statistics from the replica method

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 4373

(http://iopscience.iop.org/0305-4470/32/24/304)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 4373–4388. Printed in the UK PII: S0305-4470(99)00967-1

Wigner–Dyson statistics from the replica method

Alex Kamenev†‡ and Marc Ḿezard†§
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Abstract. We compute the correlation functions of the eigenvalues in the Gaussian unitary
ensemble using the fermionic replica method. We show that non-trivial saddle points, which
break replica symmetry, must be included in the calculation in order to correctly reproduce the
exact asymptotic behaviour of the correlation functions at a large distance.

1. Introduction

Random matrix theory (RMT) has found broad applications in physics ranging from nuclear
spectra to electrons in metallic grains, see [1,2] for reviews. The first mathematically rigorous
results for the level statistics were derived by Gaudin [3] and Dyson [4] using the method
of orthogonal polynomials. The progress in the theory of Anderson localization in the late
1970s established a close relation between the RMT and matrixσ -models initially in their
replicated form [5, 6]. Despite of a lot of efforts [7, 8], however, the initial attempts to
reproduce Dyson’s results from the replicatedσ -models were not successful: while the density
of eigenvalues could be found easily, it seemed that the eigenvalue correlations could not be
obtained from the replicatedσ -models. The most detailed account of such attempts was
probably given by Zirnbauer and Verbaarschot [8], who computed both bosonic and fermionic
replicatedσ -models and obtained different results, both differing from the correct one. Only the
supersymmetric (SUSY) formulation of theσ -model introduced by Efetov [10] gave a correct
and beautiful way of calculating the correlations of eigenvalues from aσ -model formulation.
It has thus become common knowledge over the last 15 years that the SUSY is the only field
theoretic method capable of computing the RMT level statistics, while the internal subtleties
of the replica method seem to make it inapplicable for this task.

Looking at the replicatedσ -model approach, it is clear that there is one underlying
assumption in the existing computations, which is the absence of any spontaneous breaking of
replica symmetry. The study of the statistics of eigenvalues of a largeN × N random matrix
is mapped exactly onto aσ -model, where the action is of orderN . Among various saddle
points of theσ -model which coulda priori contribute, only the trivial ‘replica symmetric’
one was discussed. In this paper we revisit the problem, and consider all possible saddle
points. Because of the symmetry of theσ -model the saddle points are actually saddle point
manifolds. We show that the computation of ther-point correlation function involves 2r saddle
point manifolds. For the one-point function (the level density), the trivial saddle point gives
Wigner’s semicircle law, whereas the second one contributes to order 1/N , and is, in fact,
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4374 A Kamenev and M Ḿezard

needed to obtain the oscillatory component of the density of states (DOS). For the two-point
function, the effect is even more dramatic since one of the extra three non-trivial saddle point
manifolds contributes to the leading order at largeN (the other two being 1/N corrections).
Taking it into account gives the correct result for the two-point correlation function. A similar
situation was actually found in the SUSY, where Andreev and Altshuler [11] showed that the
asymptotic behaviour of the two-level correlations at large energy differences (in units of the
mean level spacing) can be obtained by the saddle point evaluation of the SUSYσ -model,
including one extra non-trivial saddle point.

Here we restrict ourselves to the Gaussian unitary ensemble (GUE), where we derive
the exact results for the DOS, including oscillatory 1/N correction as well as the large
energy difference behaviour of the two-point correlation function using the fermionic replica
formalism. The strategy is simple enough to be easily generalized for the higher correlation
functions for which it also leads to known GUE expressions. Technically, a very useful step is
to integrate exactly over the angular degrees of freedom of theσ -model, using the Itzykson–
Zuber integral [12], which leaves then eigenvalues of the replicatedσ -model as the only
integration variables. The saddle points are thus discussed on the level of eigenvalues, and the
resulting replica symmetry breaking (RSB) appears to be a particularly simple version of the
vector RSB mechanism encountered in several disordered systems [13].

The paper is organized as follows: in section 2 we present the calculations of the average
DOS, including the 1/N corrections. This section is also used to introduce notations and
illustrate the technique on this simple, but instructive example. Calculation of the two-point
correlation function is given in section 3. Finally, sections 4 and 5 are devoted to discussions
of the method and remaining open questions. Some technical details are presented in the three
appendices.

2. Density of states

We are interested in the spectral properties of the randomN ×N Hermitian Hamiltonians,H ,
with the Gaussian probability distribution function

P(H) = 2N(N−1)/2

(
N

2π

)N2/2

exp

{
−N

2
TrH 2

}
. (1)

We begin with the calculation of the one-point functionS1(E) defined as

S1(E) = N−1Tr(E −H)−1 (2)

where the complex energyE has an infinitesimal negative imaginary part. The bar stands
for the averaging overH with the measure given by equation (1). The DOS is given by the
imaginary part of this correlation function

ν(E) = π−1Im S1(E). (3)

Introducing 2N anti-commuting variablesψx, ψ̄x , wherex is a discrete indexx ∈ {1, . . . , N},
the correlation function may be written as

S1(E) = N−1 ∂

∂E
lnZ(E) (4)

where

Z(E) =
∫ N∏

x=1

dψ̄x dψx exp

{
−
∑

x, y = 1Nψ̄x(Eδxy −Hxy)ψy
}
. (5)
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We use now the replica trick to write the logarithm as lnZ = limn→0(Z
n − 1)/n. As a result

the correlation function takes the form

S1(E) = lim
n→0

1

n
S
(n)
1 (E) S

(n)
1 (E) = N−1 ∂

∂E
Z(E)n. (6)

It is convenient to introduce the generating functionZ(n)(Ê) ≡ Z(E1) . . . Z(En), whereÊ is a
diagonaln×nmatrix which has the form̂E = diag{E1, . . . , En}. In the limitE1, . . . , En→ E

the generating functionZ(n)(Ê) approachesZ(E)n and gives the one-point function according
to equation (6). The generating functionZ(n)(Ê) may be written as the fermionic integral
analogous to that of equation (5). The integration runs now over 2nN fermionic variables
ψ
j
x , ψ̄

j
x , wherex ∈ {1, . . . , N} andj ∈ {1, . . . , n}. Performing the averaging over the random

matrixH one finds

Z(n)(Ê) =
∫ N∏

x=1

n∏
j=1

dψ̄j
x dψj

x exp

{
−
∑
x,j

ψ̄j
x Ejψ

j
x −

1

2N

n∑
j,k=1

TjkTkj

}
(7)

whereTjk ≡
∑

x ψ̄
j
x ψ

k
x . Introducing the Hubbard–Stratonovich decoupling of the last term

with the x-independent, Hermitiann × n matrix Q̂ and integrating out the anti-commuting
variables, one obtains theσ -model in the form [5,6]:

Z(n)(Ê) = cn
∫

d[Q̂] exp

{
−N

2
Tr Q̂2 +N Tr ln(Ê − iQ̂)

}
(8)

cn =
(
N

2π

)n2/2

2n(n−1)/2. (9)

The standard route to study the largeN limit of the DOS prescribes to take all energies
equal toE, look for the saddle points of the functional integral, equation (8), and then consider
fluctuations around the saddle points (see e.g. [8]). The saddle point equation,Q̂ = (Q̂+iE)−1,
may be solved by going to the basis whereQ̂ is diagonal. One finds two possible solutions for
each of the eigenvaluesλ1, . . . , λn of Q̂ + iE:

λ±(E) = ±
√

1− E
2

4
+

iE

2
. (10)

This results in 2n distinct diagonal matrices. AŝQ is obtained from the diagonal matrix through
a unitary transformation, one findsn + 1 saddle point manifolds, generated by rotations of
U(n)/[U(p)U(n− p)], applied to a diagonal matrix withλi = λ− for i = 1 . . . p and
λj = λ+ for j = p + 1 . . . n, where 06 p 6 n. Which of these manifolds dominates is not
obviousa priori †. It is known that the leading, largeN , contribution to the DOS is given by
the simple ‘replica symmetric’ saddle point (this one is just a point not a manifold, sinceQ̂

is proportional to 1l) withp = 0 [8]. We show below that other saddle point manifolds are
crucial for computations of the 1/N corrections to the DOS, as well as the level correlations. In
order to take into account all possible saddle points, one must be careful to integrate properly
over the manifolds. To achieve this we found it convenient to employ the method introduced
by Guhr [14] in the SUSY context. This method takes advantage of the Itzykson–Zuber
integral [12] for the GUE to integrate all rotational degrees of freedom exactly, and discusses the

† In the limit where the imaginary part ofE vanishes, the actions of the various saddle points differ only by phases.
If one is interested only in the DOS to leading order at largeN , one may choose the imaginary part of the energy,
η, to be such thatηN � 1. This makes the trivial saddle point withp = 0 dominant over all others. However,
this procedure, which smoothes the positions of individual levels, is not allowed if one computes oscillatory parts of
correlation functions.
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saddle points in terms of the eigenvalues ofQ̂. A similar method has been employed by Brézin
and Hikami in order to derive and extend the universality of level spacing distributions [15].

By first shifting theQ̂ matrix Q̂→ Q̂− iÊ † one obtains:

Z(n)(Ê) = cn(−i)Nn
∫

d[Q̂] exp

{
−N

2
Tr(Q̂− iÊ)2

}
(detQ̂)N . (11)

The Hermitian matrixQ̂ is then diagonalized by a unitary transformation,Q̂ = U−13̂U with
U ∈ U(n) and the diagonal matrix̂3 = diag{λ1, . . . , λn}. The volume element transforms
like

d[Q̂] = 12
n(3̂) d[3̂] dµ(U)

d[3̂] =
n∏
j=1

dλj
(12)

where dµ(U) is the measure of the groupU(n) and the Jacobian is given by the square of the
Vandermonde determinant

1n(3̂) ≡
∏

16i<j6n
(λj − λi). (13)

The non-trivial integration over the groupU(n) in equation (11) may be performed using the
Itzykson–Zuber integral [12] (see also appendix 5 of [1]):

Z(n)(Ê) = cn(−i)Nn
∫

d[3̂]12
n(3̂)(det3̂)N

∫
dµ(U) exp

{
−N

2
Tr(3̂− iUÊU−1)2

}
= cn(−i)Nn

( π
N

)n(n−1)/2 1

1n(iÊ)

∫
d[3̂]1n(3̂)(det3̂)N exp

{
− N

2

n∑
j=1

(λj

−iEj)
2

}
. (14)

It may seem that the last expression has poles atEi = Ej , which is not the case. Indeed,
the integral over the eigenvaluesλj results in a totally antisymmetric function ofEi , which
vanishes ifEi = Ej . The reason we introduced the diagonal matrixÊ with all elements
different was to regularize properly this fictitious singularity. The next step is to take the limit
E1, . . . , En→ E. This procedure is described in appendix A. The result is given by

Zn(E) = c′n
∫

d[3̂]12
n(3̂) exp

{
−N

n∑
j=1

A(λj , E)

}
(15)

where

A(λj , E) = 1
2(λj − iE)2 − ln λj c′n = (−i)Nn

Nn2/2

(2π)n/2
1∏n
j=1 j !

. (16)

Equation (15) may be easily derived already from the first line of equation (14) ifÊ is
proportional to the unit matrix. The reason the longer procedure was presented is to generalize
it later for the case of multi-point correlation functions. Employing equation (6), one finally
obtains for the replicated single-point correlation function

S
(n)
1 (E) = ic′n

∫
d[3̂]12

n(3̂) exp

{
−N

n∑
j=1

A(λj , E)

}[ n∑
j=1

(λj − iE)

]
. (17)

† To preserve the Hermiticity one may choose the elements of theÊ matrix on the negative imaginary axis and
perform the analytical continuation to the real axis after the group integration. Since the resulting expression is an
analytic function of allEi in the lower half plane, this procedure is legitimate.
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So far all the calculations have been exact. One may now take advantage of the large
parameterN � 1 to perform the integrations in equation (17) by the saddle point method.
DifferentiatingA(λj , E) overλj , one finds two saddle point solutions for eachλj , which are
given byλ±(E) defined by equation (10). This leads to 2n distinct saddle points of the integral
in equation (17), each of them may be brought to the form

3̂ = diag{λ−, . . . , λ−︸ ︷︷ ︸
p

, λ+, . . . , λ+︸ ︷︷ ︸
n−p

}. (18)

There areCpn = n!/[p!(n − p)!] such saddle points for everyp, 0 6 p 6 n. Finding
dominant saddle points is not totally trivial. On the one hand, the saddle point action,
A± = A(λ±(E),E), is such that|A+| = |A−| when the energy is real (see footnote on
page 3). Furthermore, one must be careful with the saddle point calculation of the integral in
equation (17) because the pre-exponential factor,12

n(3̂), vanishes identically at any saddle
point (for n > 2). Therefore, it should be expanded to a sufficiently high power ofλj − λ±
to produce a non-zero result. To this end we introduce variablesξj describing fluctuations
around the saddle point, equation (18), defined as:

λi = λ− + ξi/
√
N i = 1 . . . p

λj = λ+ + ξj /
√
N j = p + 1 . . . n

(19)

and the diagonal matriceŝ4− = diag{ξ1 . . . ξp} and4̂+ = diag{ξp+1 . . . ξn}. For anyp one
may identically rewrite12

n(3̂) as

12
n(3̂) =

(
1√
N

)p(p−1)+(n−p)(n−p−1) [ p∏
i=1

n∏
j=p+1

(
λ+ − λ− +

ξj − ξi√
N

)]2

×12
p(4̂−)1

2
n−p(4̂+). (20)

The factor in square brackets on the rhs of this expression is non-vanishing at the saddle point
and therefore may be substituted by its saddle point value. Expanding the exponent to second
order in the deviations from the saddle point, one obtains for the replicated correlation function

S
(n)
1 (E) = ic′n

n∑
p=0

Cpn [λ+ − λ−]2p(n−p)e−NpA−−N(n−p)A+ [pλ− + (n− p)λ+ − inE]

×
(

1√
N

)p2+(n−p)2 ∫ p∏
i=1

dξi 1
2
p(4̂−) exp

{
− 1

2
A′′−

p∑
i=1

ξ2
i

}
×
∫ n∏

j=p+1

dξj 1
2
n−p(4̂+) exp

{
− 1

2A
′′
+

n∑
j=p+1

ξ2
j

}
(21)

whereA′′± = ∂2
λA(λ,E)|λ± . The two remaining integrals are known as a version of Selberg’s

integral [1], given by∫ p∏
i=1

dξi 1
2
p(4̂−) exp

{
− t

p∑
i=1

ξ2
i

}
= (2t)−p2/2�p with �p = (2π)p/2

p∏
i=1

i!. (22)

As a result the correlation function takes the form

S
(n)
1 (E) = (i)1−nNe−nNA+

n∑
p=0

Fpn [λ+ − λ−]2p(n−p) Np(n−p)

(
√
A′′+)(n−p)

2
(
√
A′′−)p

2
epN(A+−A−)

×[pλ− + (n− p)λ+ − inE] (23)
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where we have introduced theFpn symbol as

Fpn ≡ Cpn
∏p

j=1 j !
∏n−p
j=1 j !∏n

j=1 j !
=

p∏
j=1

0(j)

0(n− j + 1)
p 6= 0 (24)

andFp=0
n = 1. Since the0-function diverges at any negative integer,F

p>n
n = 0. Therefore

one may extend the summation overp in equation (23) up to infinity. The resulting expression
is suitable for the analytical continuation,n→ 0. To continue theFpn function one may use
the identity0(−z) = −π/(0(z + 1) sinπz) with z = j − 1− n, which leads to

Fpn = (−1)p(p−1)/2

[
sinπn

π

]p p∏
j=1

0(j)0(j − n) p 6= 0. (25)

Expanding the sinπn for smalln, one obtainsFp=0
n→0 = 1;Fp=1

n→0 = n, whereasFp>2
n→0 = O(np).

As a result only two terms withp = 0 andp = 1 survive in the sum in equation (23). This
is an important conclusion: out of the 2n possible saddle points only one withp = 0 and
n with p = 1 contribute in the replica limit. Of course, the argument we have given here
is somewhat heuristic since the series in equation (23) is divergent for non-integern. This
should be justified more rigorously. Although we have not completed the rigorous proof of
this statement, we present some elements of the proof in appendix B.

One may easily check that thep = 1 contribution is smaller by a factor 1/N with respect
to thep = 0 one. We are therefore back to the familiar statement that the largeN limit of
the DOS may be calculated by the replica method using a single trivial saddle point for theQ̂

matrix which is proportional to the unit matrix. In particular one obtains

S1(E)(p=0) = i(λ+ − iE). (26)

Employing equations (3) and (10) one finds the famous ‘law of semicircle’ for the DOS,
ν0(E) =

√
4− E2/(2π).

It is instructive to look at the 1/N contribution originating from thep = 1 saddle point
manifold:

S1(E)(p=1) = −i
1

N

1

λ+ − λ−
eN(A+−A−)√
A′′+A

′′−
. (27)

This leads to an oscillatory correction to the mean DOS of the following form:

δνosc(E) = 1

Nπ

(−1)N+1

4− E2
cos[N(2θ + sin 2θ)]

= 1

N4π3

1

ν2
0(E)

cos

[
2πN

∫ E

−2
ν0(Ẽ) dẼ + π

]
(28)

where sinθ ≡ E/2. This is indeed the correct 1/N oscillating correction, as can be checked
directly using the exact, finiteN , expression for the DOS [1]:

ν(E) = e−NE
2/2

√
2πN2N0(N)

[
HN

(
E

√
N

2

)
HN

(
E

√
N

2

)

−HN−1

(
E

√
N

2

)
HN+1

(
E

√
N

2

)]
(29)

and employing the following integral representation of the Hermite polynomials:

HN+k

(
E

√
N

2

)
= (−2i)N+k

√
π

(√
N

2

)N+k+1 ∫ ∞
−∞

dλ e−NA(λ,E)λk. (30)
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Evaluating this integral in the saddle point approximation, one obtains the ‘semicircle’ as
the leading term and equation (28) as the 1/N correction. Here we do not discuss the 1/N

correction to the smooth part of the DOS, which may be easily evaluated by expanding near
the trivialp = 0 saddle point [9,16].

Notice that in deriving this result alln + 1 saddle point manifolds in thêQ space were
taken into account. However, only two of them appear to contribute in then → 0 limit. In
the leading order inN → ∞ only the trivial oneQ̂ ∼ 1l remains, whereas thep = 1 is
responsible for the oscillatory 1/N contribution to the DOS. We shall see below that in the
case of the two-point correlation function non-trivial saddle point manifolds contribute already
to the leading order.

These corrections due to the replica symmetry braking saddle point, which lead to an
oscillatory behaviour of the density of states in the rangeλ ∈ [−2, 2], also lead to an
exponentially small (inN ) tail of the density of states outside of the interval [−2, 2]. This
fact was first noticed by Cavagnaet al [17], who also showed that thep = 1 saddle point
reproduces the correct exponentially small tail.

3. Two-point correlation function

The two-point correlation function is defined as

S2(E,E
′) = N−2Tr(E −H)−1 Tr(E′ −H)−1 = N−2∂ lnZ(E)

∂E

∂ lnZ(E′)
∂E′

(31)

where complex energiesE andE′ have negative and positive imaginary parts correspondingly.
Introducing two sets of replicas with sizesn and n′, respectively, to handle each of the
logarithms in this expression, one obtains

S2(E,E
′) = lim

n,n′→0

1

nn′
S
(n+n′)
2 (E,E′) S

(n+n′)
2 = 1

N2

∂2

∂E∂E′
Z(E)nZ(E′)n′ . (32)

We introduce again, for the sake of regularization, the functionZ(n+n′)(Ê), whereÊ now,
and in the rest of this section, is a diagonal(n + n′) × (n + n′) matrix of the form
Ê = diag{E1, . . . , En, En+1, . . . , En+n′ }; the limit E1, . . . , En → E; En+1, . . . , En+n′ → E′

will be taken at the appropriate stage. The next steps are exactly identical to those of the
previous section, up to the change ofn into n + n′: averaging overH , decoupling with the
(n+n′)× (n+n′)matrix fieldQ̂ and integrating over the groupU(n+n′) using the Itzykson–
Zuber integral. This leads to the following result for the functionZ(n+n′)(Ê) (equivalent to that
of equation (14)):

Z(n+n′)(Ê) = cn+n′(−i)N(n+n′)
( π
N

)(n+n′)(n+n′−1)/2
∫

d[3̂]
1n+n′(3̂)

1n+n′(iÊ)

×(det3̂)N exp

{
− N

2

n+n′∑
j=1

(λj − iEj)
2

}
(33)

where3̂ is a diagonal(n + n′)× (n + n′) matrix containing the eigenvalues of thêQ matrix.
Once again, since the integral is a totally antisymmetric function ofEi , there are no poles at
Ei = Ej . The next step is to take the limitEj → E for j = 1, . . . , n andEj ′ → E′ for
j ′ = n + 1, . . . , n + n′. The corresponding limit is calculated in appendix A, the result is:

Zn(E)Zn
′
(E′) = c′nc′n′

∫
d[3̂]12

n(3̂
(n))12

n′(3̂
(n′))

∏n
j=1

∏n+n′
j ′=n+1(λj ′ − λj )

[i (E′ − E)]nn′
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× exp

{
−N

n∑
j=1

A(λj , E)−N
n+n′∑
j ′=n+1

A(λj ′ , E
′)
}

(34)

where3̂(n) ≡ diag{λ1, . . . , λn}and3̂(n′) ≡ diag{λn+1, . . . , λn+n′ }. Differentiation with respect
toE andE′ gives the replicated two-point correlation function. Non-trivial correlations exist
only in the range whereE−E′ is of the order of the level spacing, namely 1/N . We introduce
thus scaling variablesε = NE andε′ = NE′ and restrict ourselves to the vicinity of the center
of the band|ε|, |ε′| � N . The largeN limit of the correlation function at fixedε, ε′ is given
by:

S
(n+n′)
2 (ε, ε′) = c′nc′n′Nnn′

∫
d[3̂]12

n(3̂
(n))12

n′(3̂
(n′))

∏n
j=1

∏n+n′
j ′=n+1(λj ′ − λj )

[i(ε′ − ε)]nn′

× exp

{
−N

n∑
j=1

A
(
λj ,

ε

N

)
−N

n+n′∑
j ′=n+1

A

(
λj ′ ,

ε′

N

)}

×
[
−

n∑
j=1

λj

n+n′∑
j ′=n+1

λj ′ − inn′

ε′ − ε
( n∑
j=1

λj −
n+n′∑
j ′=n+1

λj ′

)
− nn

′(1 +nn′)
(ε′ − ε)2

]
. (35)

In the largeN limit the correlation function may be evaluated using the saddle point
approximation. The saddle points of the integral in equation (35) are given byλj = ±1,
for j = 1, . . . n+n′, which is the zero energy limit ofλ±(E) discussed in the previous section.
Altogether there are 2n+n′ distinct saddle points. Each one of them may be parametrized in the
following manner:

3̂ = diag{−1, . . . ,−1︸ ︷︷ ︸
p

,+1, . . . ,+1︸ ︷︷ ︸
n−p

,+1, . . . ,+1︸ ︷︷ ︸
p′

,−1, . . . ,−1︸ ︷︷ ︸
n′−p′

} (36)

where 06 p 6 n and 06 p′ 6 n′. Givenp andp′, there areCpn C
p′
n′ such saddle points.

As before, one must be careful with the saddle point calculation because of the vanishing
prefactors. The method we shall follow is the same as in the previous section. One introduces
variablesξj , ξ ′j ′ , describing fluctuations around the saddle point:

λi = −1 + ξi/
√
N i = 1 . . . p

λj = +1 +ξj /
√
N j = p + 1 . . . n

λi ′ = +1 +ξ ′i ′/
√
N i ′ = n + 1 . . . n + p′

λj ′ = −1 + ξ ′j ′/
√
N j ′ = n + p′ + 1 . . . n + n′

(37)

and groups them into diagonal matrices4̂− ≡ diag{ξ1, . . . , ξp}, 4̂+ ≡ diag{ξp+1, . . . , ξn},
4̂′+ ≡ diag{ξ ′n+1, . . . , ξ

′
n+p′ }, 4̂′− ≡ diag{ξ ′n+p′+1, . . . , ξ

′
n+n′ }. For largeN the determinants are

decomposed as:

1n(3̂
(n)) '

(
1√
N

)p(p−1)/2+(n−p)(n−p−1)/2

2p(n−p)1p(4̂−)1n−p(4̂+)

1n′(3̂
(n′)) '

(
1√
N

)p′(p′−1)/2+(n′−p′)(n′−p′−1)/2

(−2)p
′(n′−p′)1p′(4̂

′
+)1n′−p′(4̂′−).

(38)

Finally, the remaining factor in equation (35) takes the form

n∏
j=1

n+n′∏
j ′=n+1

(λj ′ − λj ) ' 2pp
′
(−2)(n−p)(n

′−p′)

(
√
N)p(n

′−p′)+(n−p)p′

[ p∏
i=1

n+n′∏
j ′=n+p′+1

(ξ ′j ′ − ξi)
][ n∏

j=p+1

n+p′∏
i ′=n+1

(ξ ′i ′ − ξj )
]
.

(39)
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Expanding the exponent in equation (35) around the saddle point, equation (36),

NA
(
λj ,

ε

N

)
' N

2
−N ln(±1)∓ iε − ε2

4N
+

(
ξj − iε

2
√
N

)2

+ O

(
1

N3/2

)
(40)

one finds that the integrals overξj andξ ′j may be expressed asIp,n′−p′(i(ε − ε′)/2
√
N) ×

In−p,p′(i(ε − ε′)/2
√
N), where the functionIr,s(a) is a generalization of Selberg’s integral,

defined as:

Ir,s(a) ≡
∫

d[X̂] d[Ŷ ]1r(X̂)1s(Ŷ )1r+s(X̂ ⊕ Ŷ ) exp

{
−

r∑
j=1

(xj − a)2 −
s∑
k=1

y2
k

}
. (41)

HereX̂, Ŷ andX̂ ⊕ Ŷ are diagonal matrices:̂X = diag{x1, . . . , xr}, Ŷ = diag{y1, . . . , ys},
andX̂ ⊕ Ŷ = diag{x1, . . . , xry1, . . . , ys}. We show in appendix C that this integral is given
by

Ir,s(a) = 2−(r
2+s2)/2�r�s(−a)rs (42)

where�r is the usual Selberg integral, equation (22). Up to an overall constant factor which
goes to one in the limitn, n′ → 0, one thus has:

Cpn C
p′
n′ Ip,n′−p′

(
i(ε − ε′)

2
√
N

)
In−p,p′

(
i(ε − ε′)

2
√
N

)
= Fpn Fp

′
n′

(
i(ε′ − ε)√

N

)p(n′−p′)+(n−p)p′
2−(p−p

′)2. (43)

Grouping all the terms, one finally obtains

S
(n+n′)
2 (ε, ε′) =

n∑
p=0

n′∑
p′=0

Fpn F
p′
n′
(−1)pp

′
2−3p2−3p′2+4pp′N(n−p+p′)(n′−p′+p)

[i (ε′ − ε)]nn′−p(n′−p′)−(n−p)p′ e2i(p′ε′−pε)+iπN(p−p′)

×
[
(n− 2p)(n′ − 2p′)− inn′

(ε′ − ε) (n− 2p + n′ − 2p′)− nn
′(1 +nn′)
(ε′ − ε)2

]
(44)

where we have omitted an inessential factor constO(n).
Employing the fact thatFp>nn = Fp′>n′n′ = 0, one may extend summations overp andp′

to infinity and then perform the analytical continuation,n, n′ → 0. Due to the properties of
theF -symbol (cf equation (25)) only the terms withp = 0, 1 andp′ = 0, 1 contribute in the
replica limit. We need to evaluate the contributions of these four saddle points. Recalling that
F 0
n = F 0

n′ = 1, one finds for thep = p′ = 0 contribution to the two-point correlation function,

S2(ε, ε
′) = limn,n′→0(nn

′)−1S
(n+n′)
2 :

S2(ω)(p=p′=0) =
(

1− 1

ω2

)
(45)

whereω ≡ ε−ε′. This is the result obtained in the perturbation theory around the usual saddle
point [18]. There is, however, an other contribution toS2 originating from the saddle points
with p = p′ = 1. It is easily computed, using the fact thatF 1

n = n andF 1
n′ = n′, and is equal

to:

S2(ω)(p=p′=1) =
e−2iω

ω2
. (46)

It is easy to check that the saddle points withp = 0, p′ = 1 andp = 1, p′ = 0 lead to
1/N oscillatory correction to the disconnected part of the two-point correlation function, cf
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equation (28). Adding together the two leading terms, equations (45) and (46), one obtains
the final result for the two-point correlation function:

S2(ω) = 1− 1− e−2iω

ω2
= 1− 2iω−2e−iω sinω. (47)

Although this is the exact result [1,4,8,10] for the GUE for anyω � N , the way it was derived
here only justifies it for 1� ω � N . This is because of the terms which were omitted in
the expansions (38) and (39). Although they look superficially as being of order 1/

√
N , they

can, in fact, contribute. A careful examination shows that the generalized Selberg’s integral
is just the leading largeω (ω � 1) contribution. We have thus computed only the leading
term at largeω for each saddle point, but corrections could be incorporated systematically.
Accidentally, the obtained expression appears to be exact down to zeroω. A similar situation
was already encountered in a SUSY approach, when the soft modes integrals were calculated
with the saddle point method including an additional non-trivial saddle point [11]. In this
sense our new saddle point withp = p′ = 1 is a close analogue of the SUSY saddle point of
Andreev and Altshuler [11].

4. Discussion of the method

Let us add some comments on the relation between our calculations and the saddle point
evaluation of theσ -model, equation (8) witĥE = diag{E1ln, E′1ln′ }. Looking for the saddle
point solution in the formQ̂ = U−13̂U , one finds the solution in the form

Q̂ =
(
V −1 0

0 V ′−1

)
3̂

(
V 0
0 V ′

)
(48)

with 3̂ being a diagonal matrix, obeying32 + iÊ3̂ − 1l = 0, and arbitraryV ∈ U(n);
V ′ ∈ U(n′). For a diagonal matrix̂3 of the structure given by equation (36), there is a set of
rotations belonging to the coset space

U(n)

U(p)U(n− p) ×
U(n′)

U(p′)U(n′ − p′) (49)

which leave the action invariant, while changing the saddle point matrix,Q̂. As a result, there is
a continuous saddle point manifold, which contains true zero modes of the functional integral,
equation (8). In addition there are usual ‘soft modes’ with masses of order|ε−ε′| � N . Notice
that there are no zero modes around the trivial saddle pointp = p′ = 0. The saddle point,
equation (36), containsn−p+p′ components which are +1 andn′−p′+p components which are
−1. Therefore, out of the total(n+n′)2 fluctuation directions(n+n′)2−2(n−p+p′)(n′−p′+p)
are massive with the massN , whereas the remaining 2(n−p+p′)(n′−p′+p)degrees of freedom
are split between [n2−p2−(n−p)2]+[n′2−p′2−(n′−p′)2] = 2(p(n−p)+p′(n′−p′)) zero
modes (cf (49)) and 2nn′ −2p(n′ −p′)−2(n−p)p′ soft modes with the mass|ε− ε′| � N .
The integrals over the zero modes must be calculated exactly giving rise to the volume of the
coset space (49). In the regime 1� |ε − ε′|, the integrals over both massive and soft modes
may be evaluated in the Gaussian approximation giving rise to factorsN−1/2 and|ε−ε′|−1/2 in
the number of modes power. This is precisely the structure of equation (44), where the factor
F
p
n F

p′
n′ is proportional to the volume of the coset space (49). The advantage of our method

is an easy control over combinatorial factors, coefficients etc, otherwise it is equivalent to the
Gaussian evaluation of the functional integral, equation (8), similar to that of [11] for the SUSY
case.

Our method can be easily generalized for the higher-order correlation functions. For
example, calculations of the three-point functionS3(E,E

′, E′′) with, say,E having negative
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andE′, E′′ positive imaginary parts, lead to the triple sum overp, p′, p′′ analogous to that of
equation (44). Again only the terms withp, p′, p′′ = 0, 1 contribute in the replica limit. One
may easily check that the correct result for theconnectedGUE three-point correlation function
follows from thep = p′ = 1; p′′ = 0 andp = p′′ = 1; p′ = 0 terms, whereas all other
possible combinations, includingp = p′ = p′′ = 1, appears to be small in powers of 1/N .

5. Conclusion and perspectives

There are several questions raised by our computation. An obvious one is to have a more
rigorous derivation of the analytic continuation of theg(x, n) function at smalln (see
appendix B). Also, we have derived here only the asymptotic form of the correlation function
at large energy differences,ω � 1. We are convinced that the replica method allows to
compute the correlation at allω, but an explicit construction would be interesting. Extending
our approach to bosonic replicas and to other random matrix ensembles are among other open
problems.

Here we have presented what we believe to be the first consistent application of the replica
method to the RMT. Our computation reconciles the fermionic replica result with the previous
approaches. The point of this paper is not to challenge these previous approaches. The results
which we have derived here have been well known for years, and in fact there exist in the
literature much stronger results on level spacing universality (see e.g. [15] and references
therein). Theσ -model representation itself has proven very successful when used with the
SUSY method: in problems of random energy levels, the SUSY technique has been very
well developed and has allowed one to derive many results in various problems of solid state
and nuclear physics (see [2, 19]). We think that our result has two interesting aspects: the
mathematical consistency on the one hand, and the possibility to use these ideas for a study of
disorderedinteractingelectrons.

The previous situation in which the replica approach was considered as ill was not
satisfactory from the mathematical point of view. Furthermore, the replica method is known to
be highly successful in other problems such as the statistical mechanics of classical disordered
systems (see [20] for a review) and localization theory [21], and its failure in the simple problem
of eigenvalue correlations seemed strange. In this respect we would like to comment about
the RSB which we have found. While theσ -model formulation seems to involve an × n
matrix order parameter, similar to the one which has been discussed for instance in spin glass
problems, the symmetry groups are very different. In spin glasses the symmetry group of the
replicated system is just the permutation group, while in theσ -model there is a larger symmetry
group: in our case some version of the unitary group (depending on the type of correlation one
computes, and whether one would use commuting or anti-commuting replicas). Integrating
over the angular variables has left us with an order parameter (the set ofn eigenvalues of the
Q̂ matrix) which is a vector in the replica space. Therefore the pattern of the RSB which we
have found is much more reminiscent of the ‘vector RSB’, discussed in the study of random-
field-like problems at low temperature [13], rather than the hierarchical RSB scheme, which
describes the spin glass mean-field theory. The vector RSB may be traced back to the existence
of several distinct ground state configurations in a problem. In all cases studied so far, there
is an infinity of RSB saddle points, which contribute to the partition function. At the same
time the SUSY approach cannot address these problems, because it is unable to estimate a
sum over ground states, but rather computes a topological invariant, given by the sum over all
saddle points, weighted by the parity of the number of unstable directions [22]. In the RMT
the situation is much simpler: SUSY is exact, and there is only a finite number of saddle points
contributing in the vector RSB (two saddle points in the DOS computation). These facts are
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certainly related, and it would be highly desirable to better understand their connection.
The SUSY method relies crucially on the fact that the original action (as in equation (5))

is quadratic in the field variables. In the application to electronic system, it is thus restricted to
non-interacting electrons. The replica method does not have such a limitation, and it is therefore
capable to address problems of interacting electrons [23]. It would be very interesting to see
whether the new saddle points which we have found have some implications in the theory of
interacting electrons in disordered media.
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Appendix A.

We first evaluate the integral given in equation (14), in the limitEj → E, j ∈ {1 . . . n}.
DenotingEj = E + ηj , one rewrites the integral in the following form:

ζ(E1, . . . , En) =
∫

d[3̂]1n(3̂) exp

{
−N

n∑
j=1

A(λj , E) +N
n∑
j=1

λj (iηj )− N
2

n∑
j=1

η2
j

}
(A.1)

whereA(λj , E) is defined by equation (16). Expanding the term exp{N∑j λj (iηj )} in series,
one obtains:

ζ(E1, . . . , En) = exp

{
− N

2

∑
j

η2
j

} ∞∑
k1,...,kn=1

Nk1+...kn

k1!, . . . , kn!
(iη1)

k1, . . . , (iηn)
knTk1,...,kn (A.2)

where the tensorT is a function ofE defined as:

Tk1...kn ≡
∫

d[3̂]1n(3̂)λ
k1
1 . . . λ

kn
n exp

{
−N

n∑
j=1

A(λj , E)

}
. (A.3)

Since the Vandermonde determinant is antisymmetric inλj , the tensorT is fully antisymmetric:
for any permutationπ of then indices, one has

Tk1...kn = Tkπ(1)...kπ(n)Sπ (A.4)

whereSπ = ±1 is the signature of the permutation. In particular, one notices thatTk1,...,kn

vanishes whenever two exponentski andkj (with i 6= j ) are equal. We are interested in the
leading behaviour ofζ when allηj go to zero simultaneously. From the expression (A.2) and
the antisymmetry ofT , it is clear that the leading term is of orderηn(n−1)/2 and is obtained
wheneverk1 = 0, k2 = 1, . . . , kn = n− 1, or any permutation of the integers 0, 1, . . . n− 1,
and the exponential prefactor may be neglected. The leading order inη may be written as a
sum over all permutationsπ of the ensemble{0, . . . , n− 1}:

ζ(E1, . . . , En) ' T01...n−1N
n(n−1)/2 1∏n−1

j=0 j !

∑
π

Sπ(iη1)
π(0), . . . , (iηn)

π(n−1). (A.5)
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In the sum over permutations one recognizes the Vandermonde determinant of the iηj , which is
equal to1n(iÊ) and thus cancels the corresponding factor in the denominator of equation (14).
As for the value ofT01...n−1, it may be rewritten, again using the antisymmetry of1n(3̂), as:

T01...n−1 = 1

n!

∑
π

Sπ

∫
d[3̂]1n(3̂)λ

π(0)
1 . . . λπ(n−1)

n exp

{
−N

n∑
j=1

A(λj , E)

}

= 1

n!

∫
d[3̂]12

n(3̂) exp

{
−N

n∑
j=1

A(λj , E)

}
. (A.6)

Therefore, in the limitηj → 0, ζ behaves as:

ζ(E1, . . . , En) ' Nn(n−1)/2 1∏n
j=0 j !

1n(iÊ)
∫

d[3̂]12
n(3̂) exp

{
−N

n∑
j=1

A(λj , E)

}
. (A.7)

This establishes expression (15).
We now evaluate then + n′ dimensional integral appearing in equation (33), in the limit

whereEj → E for j = 1 . . . n andEj ′ → E′ for j ′ = n + 1, . . . , n + n′. The procedure is
exactly the same as was explained above for the one-point function. We shall sketch it briefly.
One writesEj = E + ηj andEj ′ = E′ + η′j ′−n in terms of which the integral reads:

ζ(E1, . . . , En+n′) =
∫

d[3̂]1n+n′(3̂) exp

{
−N

n∑
j=1

A(λj , E)−N
n+n′∑
j ′=n+1

A(λj ′ , E
′)
}

× exp

{
N

n∑
j=1

λj (iηj ) +N
n′∑
j ′=1

λn+j ′(iη
′
j ′)−

N

2

n∑
j=1

η2
j −

N

2

n′∑
j ′=1

η′2j ′
}
. (A.8)

We expand the terms exp{N∑j λj (iηj )} and exp{N∑j ′ λn+j ′(iη′j ′)} in series, and notice that
in the limit where all theηj andη′j ′ go to zero simultaneously and independently, the leading

contribution, of order(η)n(n−1)/2(η′)n
′(n′−1)/2 is obtained when powers of iηj (resp. iη′j ) span

the ensemble{0, . . . , n− 1} (resp.{0, . . . , n′ − 1}). The result can be written as a sum over
all permutationsπ of the ensemble{0, . . . , n − 1}, and all permutationsπ ′ of the ensemble
{0, . . . , n′ − 1}, in the following form:

ζ(E1, . . . , En+n′) = uN n(n−1)
2 + n′(n′−1)

2

( n−1∏
j=0

j !
n′−1∏
j ′=0

j ′!
)−1∑

ππ ′
SπSπ ′(iη1)

π(0) . . . (iηn)
π(n−1)

×(iη′1)π
′(0) . . . (iη′n′)

π ′(n′−1) (A.9)

whereu is equal to:

u =
∫

d[3̂]1n+n′(3̂)λ
0
1λ

1
2 . . . λ

n−1
n λ0

n+1λ
1
n+2 . . . λ

n′−1
n+n′

× exp

{
−N

n∑
j=1

A(λj , E)−N
n+n′∑
j ′=n+1

A(λj ′ , E
′)
}
. (A.10)

Exactly as above, this integral may be rewritten by permuting separately the dummy integration
variablesλ1, . . . , λn andλn+1, . . . , λn+n′ . One thus obtains in the limit where allηj , η′j ′ → 0,
in the notations of equation (34):

ζ(E1, . . . , En+n′) ' N n(n−1)
2 + n′(n′−1)

2

( n∏
j=0

j !
n′∏
j ′=0

j ′!
)−1 ∏

16i<j6n
(Ej − Ei)
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×
∏

n+16i ′<j ′6n+n′
(Ej ′ − Ei ′)×

∫
d[3̂]1n+n′(3̂)1n(3̂

(n))1n′(3̂
(n′))

× exp

{
−N

n∑
j=1

A(λj , E)−N
n+n′∑
j ′=n+1

A(λj ′ , E
′)
}
. (A.11)

This establishes expression (34).

Appendix B.

To prove the statement that only the terms withp = 0 andp = 1 contribute to the analytic
continuation of equation (23) at smalln, let us study the functiong(x, n) = ∑n

p=0F
p
n x

p.
Using the Gaussian decomposition of the factors containing exponents ofp(n − p) andp2,
one may show that the correlation functionS(n)1 is deduced from the knowledge ofg(x, n),
wherex is a complex number, with a modulus slightly smaller than one †. Using the fact that
F
p+1
n = Fpn 0(p + 1)/0(n − p), one finds that for integern the functiong(x, n) satisfies the

following integral equation:

g(x, n) = 1 +x
∫ ∞

0
dτ e−τ

∫
C

du

2π

eu

un
g(xτu, n) (B.1)

whereC is the contour in the complexu-plane used for definition of the function 1/0(z):
it goes around the negative real half axis, starting from−∞ to zero with a small positive
imaginary part, turning around zero and getting back to−∞ with a small negative imaginary
part, it thus passes around the cut of the 1/un function forn non-integer. This integral may be
probably used to define the functiong(x, n) for an arbitraryn, although some further study of
this statement is needed. Here we are interested in the behaviour ofg(x, n) at smalln. Writing
the first two terms in the smalln expansion asg(x, n) = g0(x) + ng1(x) + · · ·, one finds that
g0 andg1 satisfy the following equations:

g0(x) = 1 +x
∫ ∞

0
dτ e−τ

∫
C

du

2π
eug0(xτu)

g1(x) = x
∫ ∞

0
dτ e−τ

∫
C

du

2π
eu[g1(xτu)− g0(xτu) ln u].

(B.2)

Assuming thatg0 andg1 are analytic in a certain domainD near the origin, one can compute
them inside this domain by series expansion in powers ofx. This leads immediately tog0 = 1
andg1 = x, which gives exactly the same answer as our heuristic arguments given in the text.
To complete the proof one has to find out a shape ofD. We believe thatD is the part of the
complex plane restricted by the unit circle, but we have not been able to prove it ‡.

Appendix C.

In this appendix we prove that the generalized Selberg integral, equation (41), is given by the
expression (42). The proof consists of two steps:

† If one neglects an imaginary part ofE, |x| = 1. A small negative imaginary part ofE implies|x| < 1. This is the
reason for our choice of the parameterization of the saddle point, where there arep eigenvaluesλ−, rather than the
opposite choice where there would bep eigenvaluesλ+.
‡ One argument in favour of this is the fact thatg(x, n), for integern, possesses the symmetryg(x, n) = xng(1/x, n);
another indication comes from the fact that|g(x, n)| is bounded at largen for a fixed complexx whenever|x| < 1,
while it diverges for|x| > 1.
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(i) We shall prove that the series expansion of the integral in powers ofa starts asam with
m > rs. To this end we rewrite the integral as

Ir,s(a) =
∫

d[X̂] d[Ŷ ]1r(X̂)1s(Ŷ )1r+s(X̂ ⊕ Ŷ ) exp

{
−

r∑
j=1

x2
j −

s∑
k=1

y2
k

+2a
r∑
j=1

xj − ra2

}
(C.1)

and notice that the integrand is equal to1r(X̂) times a totally antisymmetric function of thexj .
This allows one to substitute in the integrand1r(X̂) by r! x0

1x
1
2 . . . x

r−1
r . A similar observation

for they variables allows one to substitute in the integrand1s(Ŷ ) by s!y0
1y

1
2 . . . y

s−1
s , giving:

Ir,s(a) = r!s!e−ra2
∫

d[X̂] d[Ŷ ]1r+s(X̂ ⊕ Ŷ )[x0
1x

1
2 . . . x

r−1
r y0

1y
1
2 . . . y

s−1
s ]

× exp

{
−

r∑
j=1

x2
j −

s∑
k=1

y2
k + 2a

r∑
j=1

xj

}
. (C.2)

The integrand is the product of a term which is totally antisymmetric in all ther + s integration
variables times the factor [x0

1x
1
2 . . . x

r−1
r y0

1y
1
2 . . . y

s−1
s ] exp{2a∑j xj }. In this factor one can

expand the exponential in a power series ina. Whenever there are two of ther + s variables
appearing with the same power, the integral is zero as can be seen by permuting these two
variables. The first non-zero contribution appears, thus, when the power series generates a
power likey0

1y
1
2 . . . y

s−1
s x

π(s)
1 x

π(s+1)
2 . . . xπ(s+r−1)

r , whereπ is any permutation of the integers
s, s + 1, . . . , s + r − 1. Such terms appear when the exponential is expanded to the orderars .
This shows that the series expansion of the integral in powers ofa starts at least with the order
ars .

(ii) We demonstrate now thatIr,s is a polynomial ina of degreelessor equal tors. Shifting
eachxj to xj + a and splitting the factor1r+s(X̂ ⊕ Ŷ ), one may rewrite the integral as

Ir,s(a) =
∫

d[X̂] d[Ŷ ]12
r (X̂)1

2
s (Ŷ ) exp

{
−

r∑
j=1

x2
j −

s∑
k=1

y2
k

} r∏
j=1

s∏
k=1

(yk − xj − a). (C.3)

This shows that the integral is a polynomial ina of a degree less or equal tors.
As a result of (i) and (ii),Ir,s(a) must be proportional toars . Using equation (C.3), one

finds that it may be expressed as a product of two usual Selberg integrals, equation (22), as:

Ir,s(a) = (−a)rs
∫

d[X̂] d[Ŷ ]12
r (X̂)1

2
s (Ŷ ) exp

{
−

r∑
j=1

x2
j −

s∑
k=1

y2
k

}
= (−a)rs2−(r2+s2)/2�r�s. (C.4)
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